Standoff Project

THE VALUE OF PERFORMANCE.

Team: Elaine Reyes Dakota Saska Tyler Hans Sage Lawrence Brandon Bass

Project Description

- Objective:
 - Design and build a prototype that will hold standoff brackets while adhesive cures
- Problem:
 - Adhesive is applied and bracket is taped to help cure adhesive
 - Taping is unreliable and costs money and man hours when it fails

Figure 2: Castor 30 [1]

Design Description - CAD Model

Sage Lawrence | NG Standoff Project | 10/9/19

- Main body components of design will be constructed out of 6061 aluminum stock.
- The rail system will be made of 7075 aluminum round stock, as it will deflect less than the 6061 aluminum.
- The lead screw, splined shaft, spline nuts, and spring will all have to be purchased from outside sources.
- The current weight of the design is less than 20 lbs when implementing the theoretical material densities.

Design Description

 Clamping mechanism to the ring of the rocket motor, similar to the quick interchange part of a lathe. This component will have different templates that can slide in to adhere to the different rocket motor ring geometries.

• Splined shaft that will allow the hinge section to adjust to multiple angles to conform to the rockets dome profiles.

Design Description (2)

• Two sets of cylindrical rails allow the cart to slide inward from the hinge component.

 The cart component holds the power screw assembly and allows for a variety of applicable angles.

Figure 6. Cylindrical Rails

Figure 7. Cart Component

Design Description (3)

• The power screw provides the axial force required to adhere the brackets to the dome. A knurled nut on top will move the screw up and down.

• The force gage spins freely around the end of the power screw allowing the bracket to remain in place. This gage will provide feedback on both the pushing and pulling force from the power screw.

Figure 8. Power Screw

Figure 9. Force Gage

 The bracket holding component will mount to the bottom of the force gage and will lock in two positions (90° and 45°) to perform the pull test.

 The last component is the bracket holding mechanism itself. It will be adaptable to hold the different sized brackets provided by Northrop Grumman.

Figure 10. Bracket Holding Component

Figure 11. Bracket Holder

Brandon Bass | NG Standoff Project | 10/9/19

Design Requirements - Customer Requirements

- Customer Requirements
 - Electrostatic Discharge Compliant
 - Durability
 - Reliability
 - Adjustable Interfaces
 - Minimum 3.0 Factor of Safety

NORTHROP GRUMMAN

Figure 12. Bracket Holder

Design Requirements - Customer Requirements (2)

- Customer Requirements
 - 20 lbf Push Test
 - 50 lbf Pull Test
 - Six degrees of freedom in movement
 - Usable 4" 36" inboard of ring
 - Transportability
 - Ease of operation
 - Support 10 lbs in locked position

Figure 13. Current Design

10

Design Requirements - Clamping Force

Figure 14. Clamping Force Hand Calculations Tyler Hans | NG Standoff Project | 10/9/19

Design Requirements - Ring Moment Analyses

Figure 15. Finite Element Analysis of Motor Ring

Tyler Hans | NG Standoff Project | 10/9/19

Stress distribution in the ring:

Figure 16. Ring Stress Distribution

Design Validation - FMEA (1)

Table 1. Failure Modes and Effects Analysis										
Part #	Function	Potential Failure Mode	Potential Effects for Failure	Severity (1-10)	Potential Cause(s) for Failure	Occurance (1-10)	Current Design Controls Test	Detection (1-10)	RPN (SxOxD)	Reccomended Action(s)
2	Mount to ring	Bending of the ring	Rocket Motor Ring will break	10	Overstressing the ring	5	Visual Indicator	8	400	Moment Ring Analytical Analysis
8	Mount to hing	Clamp slips off	The device will be unsupported	8	Inefficient clamping force	3	Visual Indicator	8	192	Clamp Force Analysis
1		Shear of center pivots in force block	Unable to apply axial force	7	Overstressing the pivots	1	Audible and Visual Indicators	6	42	Factor of Safety Analysis
4		Bending of the rails		7	Overstressing the rails	1	Visual Indicator	8	56	Deformation Test
6	Translate the Brackets	Force Block does not	Device is not able to		Friction force is too great	2	Audible and Visual Indicators	5	56	Bearing Analytical Analysis
12		slide	standoff location		Ball Bearing Breaks	1	Visual Indicator	8	56	
16		Rails are damaged			Ball bearing would cause cracks or surface damage	1	Visual Indicator	8	56	
3	Hold Bracket	Clamping screw breaks	Unable to clamp standoff bracket template	8	Stress fracture occurs from manufacturing or regular use	1	Visual Indicator	8	64	Mechanics of Materials Life Cycle Analysis
17					Thread shears off	2	Visual Indicator	8	128	Thread Material Properties Analysis
22	Apply avial force	Lead Screw breaks	Unable to apply axial force	8	Force induced deformation of screw	2	Audible and Visual Indicators	5	80	Lead Screw Stress analysis
7	Арріу ахіаг югсе	Shaft Collar disconnects	Bracket Clamp disconnects from force block	7	Deformation wear of the securing screw	1	Visual Indicator	8	64	Deformation Analysis
13	Locking	Broken locks	Device can not be applied to specific location	7	Applied force exceeds lock material strength	5	Audible and Visual Indicators	5	175	Material Selection
11	Angle Bracket	Bracket Joint Pin Shear Failure	Inability to carry out the pull test	7	Applied axial force	6	Visual Indicator	8	336	Analysis
-	Does not carry electro static charge	Does not meet ESD	Damage electronic	10	Material is non- conductive	1	ESD Test	1	10	Create ESD Testing Procedure
		Compliance	components		Device does not have grounding capability	1	LOD Test	1	10	

Brandon Bass | NG Standoff Project | 11/6/19

- Critical Potential Failures
 - Bending the Circumferential Motor Ring
 - Device Losing Grip onto the Ring
 - Angled Bracket Joint Failure
- Proposed Design Solutions
 - Wider grip
 - Increase clamp force
 - Spline design to increase strength of locking mechanism
- Risk Trade-off Analysis
 - Increasing the complexity of the design adds more failure points
 - Proposed solutions increased the overall weight

Figure 17. Splined Shaft

Objective: To test the ESD Compliance of the device

Resources Required: Device prototype, multimeter, wires, ESD mat

Procedure:

Estimated Testing time - 15 minutes

- 1. Lay ESD mat flat on the table
- 2. Clamp device to the table and ensure that the device is placed on the mat
- 3. Use the multimeter to detect voltage between the device and the user.
- 4. If the multimeter reads 0V then the device is ESD Compliant

Objective: To determine the optimal dimensions and materials of the clamp necessary to support the device without deforming the outer ring material

Resources Required: pressure sensor, strain gauge, multimeter, arduino, vise grips, wires, rubber, soldering kit, aluminum sheets

Procedure:

Estimated Testing time - 2 hours

- 1. Conduct mechanics of materials calculations on aluminum
- 2. Conduct analytical analysis on clamping force
- 3. Create a program(s) that will read pressure and strain
- 4. Attach pressure sensor and strain gauges to the aluminum sheet
- 5. Measure clamping force while the program runs
- 6. Compare data to analytical analysis

Objective: To determine the best material for the rails

Resources Required steel or aluminum rods, strain gauges, wires

Procedure:

Estimated Testing time - 3 hours

- 1. Apply strain gauges to both ends of the steel rod
- 2. Connect strain gauges to computer software
- 3. Apply axial forces to the end of the rod while the software is running
- 4. Compare data to analytical results
- 5. Repeat procedure for the aluminum rod

Objective: To verify that the device will pass the axial force tests under realistic conditions

Resources Required: fully functioning prototype, fish scale, bracket,

Procedure:

Estimated Testing time - 1 hour

- 1. Clamp device to simulated outer ring
- 2. Ensure ESD compliance
- 3. Position device for the pull test
- 4. Conduct pull test and record measurements

Schedule (1)

Fall Semester				
Final Report	Everyone	0%	11/6/19	11/15/19
Final BOM/CAD Package	Sage, Dakota	0%	10/14/19	11/20/19
PDR Presentation	Everyone	0%	10/28/19	11/18/19
Individual Analytical Report	Everyone	0%	10/14/19	11/28/19
Final Prototype	Everyone	0%	11/20/19	12/4/19
Website Check 2	Tyler, Brandon, Elaine	0%	11/6/19	12/9/19
Spring Semester				
Post Mortem	Everyone	0%	1/6/20	1/15/20
Self-Learning	Everyone	0%	1/6/20	1/24/20
Hardware Review	Everyone	0%	1/15/20	2/14/20
Website Check 3	Tyler, Brandon, Elaine	0%	2/1/20	2/21/20
Midpoint Presentation	Everyone	0%	2/17/20	3/4/20
Midpoint Report	Everyone	0%	2/17/20	3/6/20
Individual Analysis II	Everyone	0%	2/1/20	3/13/20
Final Product Finished & Device Summary	Everyone	0%	1/15/20	3/25/20
Drafts of Posters	Everyone	0%	3/1/20	4/1/20
Testing Proof	Everyone	0%	3/25/20	4/8/20
Final Poster and Operation Manual	Everyone	0%	4/1/20	4/15/20
Final Presentation (UGRADS)	Everyone	0%	4/1/20	4/24/20
Final Report and CAD Package	Everyone	0%	4/6/20	4/29/20
Website Check 4	Tyler, Brandon, Elaine	0%	4/29/20	5/4/20

Figure 18. Updated Schedule Tyler Hans | NG Standoff Project | 10/9/19

Schedule (2)

- On schedule
- Distribution of the work
 - Sage
 - CAD Package
 - Ring Moment Analysis
 - Locking Methods
 - Manufacturing
 - Dakota
 - CAD Package
 - Rail Deflection Analysis
 - Rocket Motor Basics and Overview
 - Manufacturing
 - Brandon
 - Website Development
 - Power Screw Analysis
 - Axial Force Benchmarking
 - Testing

Schedule (3)

- Tyler
 - Website Development
 - Bearing Analysis
 - ESD Compliance Research
 - Manufacturing
- Elaine
 - Website Development
 - Clamp Force Analysis
 - Clamping Literature Review
 - Testing

Budget (1)

Table 2. Bill of Materials Final Design								
Part #	Part Name	Qty	Description	Functions	Material	Dimensions	Cost	Link to Cost estimate
1	Rail	2	41L40 Alloy Steel Round Rod 1/2" Diameter x 3' Length	Mode of translation for the Bracket Holder Mechanism (rail cart).	7075 Aluminum	1/2" x 1/2" x 3'	154.71	https://www.onlinemetals.com/en/search /results?q=aluminum+bar%3Aprice-asc %3AMaterial%3AAluminum%3AShape% 3ARound%2BBar%3AAlloy%3A7075&che ckbox=on&sort=price-asc#
2	36" Clamp	1	Adjustable Clamp 9133 Corner/Splicing Clamp	Secure the device to the motor ring.	6061 Aluminum	1.5" x 7.8" x 6"		
3	Bracket Holder	2	Custom made bracket holder, to be manufactured in machine shop.	Secure the bracket to the device.	6061 Aluminum	16" x 3" x 2"		
4	Rail Cart Rail Connectors	2	Custom made for fabrication at machine shop	Transports bracket holder across rail system.	6061 Aluminum	4" x 3" x 1"		
5	Spline Rail Connector	1	Custom made for fabrication at machine shop	Adjusts the angle of the device	6061 Aluminum	4" x 8"		
6	Spline Clamp Connector	1	Custom made for fabrication at a machine shop	Adjusts the angle of the device	6061 Aluminum	4" x 8"		
7	Shaft Collar	1	Custom made for fabrication at a machine shop	To prevent the bracket clamp from rotating while the handling arm is lowered onto the rocket dome	6061 Aluminum	1/2" x 4"	240.16	https://www.metalsdepot.com/aluminum _products/aluminum-square-bar
8	92 " Clamp	1	Adjustable Clamp 9133 Corner/Splicing Clamp	Secure the device to the motor ring.	6061 Aluminum	1.5" x 7.8" x 6"		
9	Bracket Clamp Screw	1	Custom made for fabrication at a machine shop	Tighten the bracket clamp around the bracket templates	6061 Aluminum	1/2" x 10"		
10	Spline Pin	1	Custom made for fabrication at a machine shop	Secure spline location in place	6061 Aluminum	1/2" x 2"		
11	Universal Joint Pin	1	Small metal rod	Lock joint in place	6061 Aluminum	1/4" x 2"		
12	Rail Cart Rotational Positioner	1	Custom made for fabrication at a machine shop	Allows team to move the location of the axial force on the rail cart	6061 Aluminum	4" x 4" x 8"		
13	Locking Rings	4	Circular Rubber stoppers that can clamp onto the metal rods	Lock the Force Block in place	Rubber	1/2" x 36"	2.99	https://www.rockler.com/non-skid-rubber -bumpers?sid=V9146?utm_source=googl e&utm_medium=cpc&utm_term=&utm_c ontent=pla&utm_campaign=PL&gclid=EA IaIQobChMIz52AkMjW5QIVbxitBh39DQsr EAOYBSABEd_PD_BwE
	•			— • • • • • • •		((D)	1 1 1 0	0// 0

Tyler Hans | NG Standoff Project | 10/9/19

Budget (2)

Total Cost Estimate:							1391.83	
22	Lead Screw	1	Metal Screw	Drives the bracket toward the rocket dome	Stainless Steel	2' x 1/2"	178.36	https://www.mcmaster.com/lead-screws
21	Power Screw	1	Carbon Steel Acme Lead Screw Right Hand, 1/2"-10 Thread Size, 2 Feet Long	Translate force from the knob onto the bracket.	Steel	1/2" x 2'	5.93	https://www.mcmaster.com/98935a911
20	Drive Knob for Cart	1	Genuine Echo KNOB, FASTENER for driveshaft coupler assembly	Transmit force into the push/pull system.	Steel	4" x 1" x 2.5"	10.59	https://www.amazon.com/Echo-V299000 160-Fastener-driveshaft-Assembly/dp/BC 7FDJSSFZ
19	Universal Joint	1	Custom made for fabrication at a machine shop	Universal joint to help position the bracket onto the rocket.	Vanadium Steel	6.5" x 5" x 1.1"	11.98	https://www.amazon.com/TEKTON-4964 -Impact-Universal-3-Piece/dp/B000NP24 0I/ref=sr_1_21?keywords=Ball+and+So cket+Joint&qid=1570592342&sr=8-21
18	Wing Nut	1	18-8 Stainless Steel Wing Nut 1/4"-20	Part of clamping mechanism to secure bracket to clamp.	Stainless Steel	31/64" x 1 1/8" x 5/8"	7.32	https://www.mcmaster.com/92001a321
17	Fastener	3	Black Oxide Alloy Steel Socket Head Screw 1/4-20, 4" Long	Works with wing nut to secure bracket to the clamp.	Black Oxide Alloy Steel	3/8" × 4"	9.25	https://www.mcmaster.com/90044a131
16	Lubricant	1	Super Lube 51004 Synthetic Oil with PTFE, High Viscosity, 4 oz Bottle	Reduce friction of the rail system.	Synthetic PTFE Oil	2" x 2" x 6.5"	4.60	https://www.amazon.com/Super-Lube-5 1004-Synthetic-Viscosity/dp/B000UKUHX K/ref=sr_1_1?keywords=Synthetic+PTFE +Oil&qid=1570591173&s=industrial&sr= 1-1
15	Hanging Scale	1	Klau Portable 150 kg / 300 lb Heavy Duty Crane Scale	Method of measuring force imparted onto bracket.	Stainless Steel	9.1" x 3.1" x 1.3"	23.99	https://www.amazon.com/Klau-Portable- Digital-Hanging-Backlight/dp/B07BHLR9E N/ref=sr_1_5?keywords=Hanging+Scale &qid=1570590867&s=industrial&sr=1-5- catcorr#customerReviews
14	Design Screws	24	2" long screws	To assemble seperate parts together in the final assembly	Stainless Steel	#4 × 5/8"	8	https://www.amazon.com/Screws-Thread -Stainless-Self-Tapping-Quantity/dp/B01 CRE76IK/ref=sr_1_2?keywords=%234+ metal+screws&qid=1573076036&refinen ents=p_n_feature_nine_browse-bin%3A 17426584011&rnid=17426558011&s=hi &sr=1-2
Table 3. Bill of Materials Final Design								

- Expected Final Design Cost ≈ \$1391.83
- Clamp Force Experiment ≈ \$78.00
- Rail Test ≈ \$154.25
- Travel ≈ \$80.00
- Low Fidelity Prototype ≈ \$13.00
- Prototype ≈ \$200.00
- Remaining Budget ≈ 8,082.92
- Budget Uncertainties
 - Design Revisions
 - Machine Shop Costs
 - Component Failures

THE VALUE OF PERFORMANCE.

References

- [1] G. Elert, "Coefficients of Friction for Rubber," Coefficients of Friction for Rubber The Physics Factbook. [Online]. Available: https://hypertextbook.com/facts/2005/rubber.shtml. [Accessed: 09-Oct-2019].
- [2] "Friction and Friction Coefficients for various Materials," Friction and Friction Coefficients for various Materials.
 [Online]. Available: https://www.engineeringtoolbox.com/friction-coefficients-d_778.html. [Accessed: 09-Oct-2019].
- [3] R. C. Hibbeler, Mechanics of Materials. Harlow, England: Pearson, 2019.